Spatiotemporal Characteristics and Self-Organization of Urban Taxi Dispatch

Author:

Zhang Wei1,Fan Ying1ORCID

Affiliation:

1. School of Systems Science, Beijing Normal University, Beijing 100875, China

Abstract

This paper proposes a matching degree to study dynamic spatiotemporal characteristics of urban taxi and offers a novel understanding of self-organization taxi dispatch in hotspots on top of the Fermi learning model. The proposed matching degree can not only reflect the overall spatiotemporal characteristics of urban taxi supply and demand but also show that the density of distribution and the distance between the taxis supply and the city center will affect the satisfaction of demand. Besides, it is interesting to note that supply always exceeds demand and they will self-organize into an equilibrium state in hotspots. To understand the phenomenon, we develop the Fermi learning model based on the prospect theory and compared the results with the popular reinforcement learning model. The results demonstrate that both models can account for self-organization behavior under different scenarios. We believe our work is crucial to explore taxis data and our indicator can provide a significant suggestion for urban taxis development.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3