Affiliation:
1. School of Aeronautical Science and Engineering, Beihang University, Beijing, China
Abstract
In this paper, the multibody parachute-payload system is simplified and analyzed. A six-degree-of-freedom rigid body flight dynamic model is established to calculate the flight trajectory, attitude, velocity, and drop point of the parachute-payload system. Secondly, the random interference factors that may be encountered in the actual airdrop test of the parachute system are analyzed. According to the distribution law of the interference factors, they are introduced into the flight dynamic model. The Monte Carlo method is used to simulate the target and predict the flight trajectory and landing point distribution of the parachute system. The simulation results can provide technical support and theoretical basis for the parachute airdrop test. Finally, the genetic algorithm is used to identify the aerodynamic parameters of the large-scale Disk-Gap-Band parachute. The simulation results are in good agreement with the test results, which shows that the research method proposed in this paper can be applied to study practical engineering problems.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献