Research on the influence of length-width ratio on cruciform parachute airdropping performance

Author:

Cheng Han1ORCID,Ouyang Yihao1,Zhang Ying1,Pan Jie1

Affiliation:

1. Aviation Engineering Institute, Civil Aviation Flight University of China, Guanghan, China

Abstract

Different from the other design parameters in general drogues, there are few studies about the parameter of Length-Width Ratio (LWR). Therefore, the fluid structure coupling model based on the Finite Element Method was used to study the deceleration characteristics and terminal trajectory stability of parachute system in this work. And the graphic transformation technology commonly used in Computer Graphics was used to realize the following of flow field with the trajectory movement. In this work, the cruciform parachutes with different LWR were taken as the research objects, and the above method was used to obtain the trajectory curves, deceleration characteristic curves, and stability curves of the cruciform parachutes under different external conditions. It was found that the deceleration performance was negatively correlated with the LWR when the other design parameters and working conditions remained unchanged, and the trajectory stability and the stability of the parachute were positively correlated with the LWR. Subsequently, the cruciform parachute with the LWR of 4.5 was used for airdropping test, and the accuracy of numerical method used in this work was verified. Then the deceleration processes of cruciform parachute (LWR: 4.5) under different dropping conditions were calculated. It could be found that the external launching conditions had a limited impact on the deceleration performance. The LWR was another design parameter that had a greater impact on the deceleration performance after the parameter of canopy area. Finally, the drag coefficient correction equation representing the deceleration performance was proposed for the first time.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

Reference18 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3