Implementing and Optimizing of Entire System Toolkit of VLIW DSP Processors for Embedded Sensor-Based Systems

Author:

Yang Xu1ORCID,Zeng Mingbin2,Zhang Yanjun3

Affiliation:

1. School of Software, Beijing Institute of Technology, Beijing 100081, China

2. College of Technology Management, University of Chinese Academy of Sciences, Beijing 100081, China

3. School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China

Abstract

VLIW DSPs can largely enhance the Instruction-Level Parallelism, providing the capacity to meet the performance and energy efficiency requirement of sensor-based systems. However, the exploiting of VLIW DSPs in sensor-based domain has imposed a heavy challenge on software toolkit design. In this paper, we present our methods and experiences to develop system toolkit flows for a VLIW DSP, which is designed dedicated to sensor-based systems. Our system toolkit includes compiler, assembler, linker, debugger, and simulator. We have presented our experimental results in the compiler framework by incorporating several state-of-the-art optimization techniques for this VLIW DSP. The results indicate that our framework can largely enhance the performance and energy consumption against the code generated without it.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3