Comparison of Bending Fatigue of NiTi and CuAlMn Shape Memory Alloy Bars

Author:

Huang Haoyu1ORCID,Zhu Yuan-Zhi2,Chang Wen-Shao3ORCID

Affiliation:

1. Beijing Key Lab of Earthquake Engineering and Structural Retrofit, The Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China

2. School of Mechanical and Materials Engineering, North China University of Technology, Beijing 100144, China

3. School of Architecture, University of Sheffield, Sheffield S10 2TN, UK

Abstract

The behaviour under cyclic bending and in particular the fatigue properties of shape memory alloy (SMA) bars are important for civil engineering applications. In this paper, structural and functional fatigue is studied for both NiTi- and copper-based shape memory alloys. The results are presented from cyclic bending tests on 7 mm diameter NiTi and 12 mm diameter CuAlMn SMA bars targeted at 100,000 cycles. During the tests, dynamic loading at 1 Hz, 5 Hz, and 8 Hz was applied for different strain levels (0.5%, 1%, 2%, and 6%). The stress-strain curve, damping ratio, and secant stiffness were analysed for material characterisation, and the evolution of these parameters was studied to assess functional fatigue. The fatigue life is extended dramatically when the strain is below 1%, and the structural fatigue life of CuAlMn is shown to be better than that of NiTi and to depend on the loading rate. However, decay in stiffness can be found in the CuAlMn SMA, which is considered to be caused particularly by its long grain boundary.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3