Influence of Manganese Content on Martensitic Transformation of Cu-Al-Mn-Ag Alloy

Author:

Liverić Lovro1ORCID,Holjevac Grgurić Tamara2,Mandić Vilko3ORCID,Chulist Robert4ORCID

Affiliation:

1. Faculty of Engineering, University of Rijeka, Vukovarska 58, 51000 Rijeka, Croatia

2. School of Medicine, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia

3. Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia

4. Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymont Str., 30-059 Krakow, Poland

Abstract

The influence of manganese content on the formation of martensite structure and the final properties of a quaternary Cu-Al-Mn-Ag shape memory alloy (SMA) was investigated. Two alloys with designed compositions, Cu- 9%wt. Al- 16%wt. Mn- 2%wt. Ag and Cu- 9%wt. Al- 7%wt. Mn- 2%wt. Ag, were prepared in an electric arc furnace by melting of high-purity metals. As-cast and quenched microstructures were determined by optical microscopy and scanning electron microscopy equipped with EDS. Phases were confirmed by high-energy synchrotron radiation and electron backscatter diffractions. Austenite and martensite transformations were followed by differential scanning calorimetry and hardness was determined using the Vickers hardness test. It was found that the addition of silver contributes to the formation of the martensite structure in the Cu-Al-Mn-SMA. In the alloy with 7%wt. of manganese, stable martensite is formed even in the as-cast state without additional heat treatment, while the alloy with 16%wt. of manganese martensite transforms only after thermal stabilization and quenching. Two types of martensite, β1′ and γ1′, are confirmed in the Cu-9Al-7Mn-2Ag specimen. The as-cast SMA with 7%wt. Mn showed significantly lower martensite transformation temperatures, Ms and Mf, in relation to the quenched alloy. With increasing manganese content, the Ms and Mf temperatures are shifted to higher values and the microhardness is lower.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3