Effect of Dietary Administration of Green Macroalgae (Ulva intestinalis) on Mucosal and Systemic Immune Parameters, Antioxidant Defence, and Related Gene Expression in Zebrafish (Danio rerio)

Author:

Rouhani Elaheh1,Safari Roghieh1ORCID,Imanpour Mohammad Reza1,Hoseinifar Seyed Hossein1,Yazici Metin2,El-Haroun Ehab3

Affiliation:

1. Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

2. Iskenderun Technical University, Faculty of Marine Sciences and Technology, Iskenderun, Hatay, Turkey

3. Fish Nutrition Research Laboratory, Animal Production Department Faculty of Agriculture Cairo University, Cairo, Egypt

Abstract

This study investigated the effects of adding green macroalgae gutweed (Ulva intestinalis) powder to zebrafish (Danio rerio) feed at different levels on innate immune responses, antioxidant defence, and gene expression. A total of 600 zebrafish ( 0.3 ± 0.08  g) were randomly allocated to 12 aquariums in four treatments with three replicates (50 fish per aquarium). Zebrafish were fed with different levels of U. intestinalis powder 0, 0.25, 0.5, and 1% for eight weeks. Whole-body extract (WBE) immune parameters including total protein level, globulin level, and lysozyme activity were evaluated and revealed statistically significant increased in all U. intestinalis supplemented groups compared to the control ( P < 0.05 ). However, mucus immune parameters (total protein, globulin, and lysozyme) were statistically different in only 1% gutweed supplemented groups from other groups. While glutathione peroxidase (GPx) and superoxide dismutase (SOD) increased with the addition of gutweed ( P < 0.05 ), catalase (CAT) did not change ( P > 0.05 ). The study results showed that dietary gutweed remarkably upregulated immune-related genes such as lysozyme (Lyz) and Interleukin 1 beta (IL-1β). Antioxidant-related genes (SOD and CAT) and growth-related genes, including growth hormone (GH) and insulin-like growth factor-I (IGF-1), were remarkably upregulated with gutweed treatment ( P < 0.05 ). In conclusion, dietary U. intestinalis showed beneficial effects on immunity, and same effects were observed in case of antioxidant and growth related genes expression in zebrafish.

Funder

Gorgan University of Agricultural Sciences and Natural Resources

Publisher

Hindawi Limited

Subject

Aquatic Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3