Affiliation:
1. Unit of Orthodontics and Paediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia, Italy
2. Unit of Restorative Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia, Italy
Abstract
Background. Acidic beverages, such as soft drinks, can produce erosion of resin composites. The purpose of the present study was to investigate mechanical properties of different esthetic restorative materials after exposure to acidic drink. Methods. Nine different composites were tested: nanofilled (Filtek Supreme XTE, 3M ESPE), microfilled hybrid (G-ænial, GC Corporation), nanohybrid Ormocer (Admira Fusion, Voco), microfilled (Gradia Direct, GC Corporation), microfilled hybrid (Essentia, GC Corporation), nanoceramic (Ceram.X Universal, Dentsply De Trey), supranano spherical hybrid (Estelite Asteria, Tokuyama Dental Corporation), flowable microfilled hybrid (Gradia Direct Flo, GC Corporation), and bulk fill flowable (SureFil SDR flow, Dentsply De Trey). Thirty specimens of each esthetic restorative material were divided into 3 subgroups (n=10): specimens of subgroup 1 were used as control, specimens of subgroup 2 were immersed in 50 ml of Coca Cola for 1 week, and specimens of subgroup 3 were immersed in 50 ml of Coca Cola for 1 month. Flexural strength and elastic modulus were measured for each material with an Instron Universal Testing Machine. Data were submitted to statistical analysis. Results. After distilled water immersion, nanofilled composite showed the highest value of both flexural strength and elastic modulus, but its flexural values decreased after acidic drink immersion. No significant differences were reported between distilled water and acidic drink immersion for all other materials tested both for flexural and for elastic modulus values. Conclusions. Even if nanofilled composite showed highest results, acidic drink immersion significantly reduced flexural values.
Subject
General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
58 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献