Nanoflower hydroxyapatite's effect on the properties of resin‐based dental composite

Author:

Sağır Kadir1,Aydınoğlu Aysu2ORCID,Hazar Yoruç Afife Binnaz2

Affiliation:

1. Department of Materials Science and Technology, Faculty of Science Turkish‐German University Istanbul Turkey

2. Department of Metallurgical and Materials Engineering, Faculty of Chemical and Metallurgical Engineering Yıldız Technical University Istanbul Turkey

Abstract

AbstractTo investigate the reinforcing effect of nanoflower‐like hydroxyapatite (NFHA) in resin‐based dental composites, we synthesized a novel NFHA using microwave irradiation (MW), hydrothermal treatment (HT), and sonochemical synthesis (SS). Silanized NFHA was then used as the reinforcing filler in dental resin composites. We characterized the structure and morphology of various HA nanostructures using x‐ray diffraction, scanning electron microscope, and TEM. The mechanical performance of dental resin composites reinforced with silanized NFHA was measured using a universal testing machine. Spherical HA, synthesized through chemical precipitation (CP), served as the control group. One‐way analysis of variance was employed for the statistical analysis of the acquired data. The results demonstrate that the nanoflower morphology significantly was improved mechanical and physical properties. After conducting trials, the NFHA synthesized using MW and HT showed a substantial enhancement in mechanical and physical properties compared to the other structures. Therefore, it can be concluded that NFHA can serve as a novel reinforcing HA filler, providing regenerative properties to resin composites with sufficient mechanical strength.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3