A Computational Model for the Radiated Kinetic Molecular Postulate of Fluid-Originated Nanomaterial Liquid Flow in the Induced Magnetic Flux Regime

Author:

Hussain Azad1,Rehman Aysha1ORCID,Nadeem Sohail2,Khan M. Riaz3,Issakhov Alibek45

Affiliation:

1. Department of Mathematics, University of Gujrat, Gujrat 50700, Pakistan

2. Department of Mathematics, Quaid-I-Azam University, Islamabad 44000, Pakistan

3. LSEC and ICMSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, School of Mathematical Science, University of Chinese Academy of Sciences, Beijing 100190, China

4. Department of Mathematical and Computer Modeling, Al-Farabi Kazakh National University, Almaty, Kazakhstan

5. Department of Mathematical and Computer Modeling, Kazakh British-Technical University, Almaty, Kazakhstan

Abstract

The performance of mass transfer rate, friction drag, and heat transfer rate is illustrated in the boundary layer flow region via induced magnetic flux. In this recent analysis, the Buongiorno model is introduced to inspect the induced magnetic flux and radiative and convective kinetic molecular theory of liquid-initiated nanoliquid flow near the stagnant point. The energy equation is modified by radiation efficacy using the application of the Rosseland approximation. Through similarity variables, the available formulated partial differential equations are promoted into the nondimensional structure. The variation of the induced magnetic field near the wall goes up, and very far away, it decays when the size of the radiation characteristic ascends. The velocity amplitude expands by enlargement in the amount of the magnetic parameter, mixed convection, thermophoresis parameter, and fluid characteristic. The nanoparticle concentration reduces if the reciprocal of the magnetic Prandtl number expands. The temperature spectrum declines by enhancing the amount of the magnetic parameter. Drag friction decreases by the increment in the values of radiation and thermophoresis parameters. Heat transport rate increases when there is an increase in the values of Brownian and magnetic parameters. Mass transfer rate increases when there is incline in the values of the magnetic Prandtl and fluid parameter.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3