Reaction Kinetics of Sodium Bentonite with Different Acid Systems: An Experimental Study

Author:

Li Yang1ORCID,Ni Xiaoming12,Zhao Zheng1ORCID,Yang Cixiang1,Li Zhongcheng3

Affiliation:

1. School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan, China

2. Collaborative Innovation Center of Coalbed Methane and Shale Gas for Central Plains Economic Region Henan Province, Jiaozuo 454000, China

3. China United Coalbed Methane Co., Ltd., Beijing 100011, China

Abstract

Discovering the characteristics of the reaction kinetics of acid systems (hydrogen fluoride (HF), hydrochloric acid (HCl), and CH3COOH) at different concentrations with sodium bentonite can provide experimental support for optimising formulations used in removing plugs through acidification. By utilising a spectrophotometer and acid-base titration, changes in contents of Si, Al, and H+ concentration when sodium bentonite reacted with different acid systems (HF, HF, HCl, and HF and CH3COOH) at different concentrations (5%, 10%, and 15%) for different reaction times (1, 2, 4, 8, 12, and 24 h) at 45°C were measured. Based on this, a reaction kinetics model of H+ was fitted and reaction mechanisms of HF with sodium bentonite after adding HCl and CH3COOH were analysed. The results demonstrated that the rate of dissolution of Al was high and the reaction reached equilibrium in 1 h. Si showed a fast dissolution rate in the acid solution containing HF. In an HCl + HF + CH3COOH acid system, at a concentration of 15%, the greatest dissolution occurred, with a more stable dissolution rate and longer reaction time. Among the three acids tested, it was HF that mainly reacted with sodium bentonite, while the other two acids had weak reactions therewith. In the acid system containing HF, HF molecules reacted with sodium bentonite, rather than other forms, such as H+, F, and HF2. The addition of HCl could promote the reaction, while CH3COOH inhibited the reaction. The research results provide experimental support for optimising the formulation of such acid solutions.

Funder

Major Oil and Gas Special Project

Publisher

Hindawi Limited

Subject

General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3