SVR-EEMD: An Improved EEMD Method Based on Support Vector Regression Extension in PPG Signal Denoising

Author:

Liu Guangda1ORCID,Hu Xinlei1ORCID,Wang Enhui1ORCID,Zhou Ge1ORCID,Cai Jing1ORCID,Zhang Shang1ORCID

Affiliation:

1. College of Instrumentation and Electrical Engineering, Jilin University, Changchun 130026, China

Abstract

Photoplethysmography (PPG) has been widely used in noninvasive blood volume and blood flow detection since its first appearance. However, its noninvasiveness also makes the PPG signals vulnerable to noise interference and thus exhibits nonlinear and nonstationary characteristics, which have brought difficulties for the denoising of PPG signals. Ensemble empirical mode decomposition known as EEMD, which has made great progress in noise processing, is a noise-assisted nonlinear and nonstationary time series analysis method based on empirical mode decomposition (EMD). The EEMD method solves the “mode mixing” problem in EMD effectively, but it can do nothing about the “end effect,” another problem in the decomposition process. In response to this problem, an improved EEMD method based on support vector regression extension (SVR-EEMD) is proposed and verified by simulated data and real-world PPG data. Experiments show that the SVR-EEMD method can solve the “end effect” efficiently to get a better decomposition performance than the traditional EEMD method and bring more benefits to the noise processing of PPG signals.

Funder

National “Twelfth Five-Year” Science and Technology Support Project of China

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3