A vital sign signal noise suppression method for wearable piezoelectric devices

Author:

Xin Yi1ORCID,Liu Hongyan1ORCID,Hou Tianyuan1ORCID,Song Xuefeng1ORCID,Tong Junye1ORCID,Cui Meng1,Li Meina1ORCID,Zhai Jingjie1ORCID

Affiliation:

1. Jilin University , Changchun 130061, China

Abstract

This paper tackles the problem of noise suppression during vital sign signal monitoring. Physiological signal monitoring is a significant and promising medical monitoring method, and wearable medical monitoring devices based on piezoelectric polymer sensors are a trending way for their advantages of being flexible in the shape, portable to use, and comfortable to wear. However, this raises the question that the measured signal contains much more noise components. To avoid the following shortcoming of low signal to noise ratio (SNR), a noise suppression method based on improved wavelet threshold and empirical mode decomposition combined with singular value decomposition (SVD) screening the intrinsic mode function (IMF) components is proposed. A wavelet transform is first used under the combination of hard and soft thresholds to focus the target range in the low-frequency region where the energy of the physiological signal is concentrated. Then, a complete ensemble empirical mode decomposition is used to decompose the signal effectively, which can resist the influence of random noises. Meanwhile, a SVD decomposition procedure was used to filter out the lower correlated IMF components to retain the validity of the original signal. We verified the effectiveness of the proposed method through simulated and measured experiments as well as the advantages and disadvantages of the algorithm compared with other physiological signal denoising algorithms through SNR filtering results, power spectrum distribution, and other perspectives. The results proved that the proposed method could effectively remove more detailed noise and improve the SNR of the signal efficiently, which is more conducive to the demand for auxiliary medical diagnosis in the future.

Funder

National Natural Science Foundation of China

Industrial Technology Research and Development Project of Jilin Provincial Development and Reform Commission

National Key Research and Development Program of China

Publisher

AIP Publishing

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3