Effect of Wetting-Drying Cycles on Mechanical Behaviour and Electrical Resistivity of Unsaturated Subgrade Soil

Author:

Hu Zhi1ORCID,Peng Kai1,Li Lihua1ORCID,Ma Qiang1ORCID,Xiao Henglin1ORCID,Li Zhichao1,Ai Pinbo1

Affiliation:

1. School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China

Abstract

Compacted soil is widely used in road and railway subgrade, while alternation of seasons can cause fluctuations in moisture content of soil (i.e., wetting-drying cycles) and influence the performance of soil. In order to research the effect of wetting-drying cycles on mechanical behaviour and electrical resistivity of compacted unsaturated subgrade soil, wetting-drying tests considering different number and cyclic amplitude were conducted on compacted unsaturated clay specimens, and the electrical resistivity and unconfined compressive strength of soil were measured in this study. The AC (alternative current) two-electrode method was applied in the resistivity measurement. The experimental results show that increasing number and cyclic amplitude of wetting-drying cycles can both reduce the strength and electrical resistivity of the compacted unsaturated specimens. After 3-4 wetting-drying cycles, the strength and electrical resistivity tend to be constant value. The change of pore structure can be the key factor leading to the reduction of electrical resistivity of soil subjected to wetting-drying cycles and consequently causing the decrease of soil strength in the present study. Thus, the electrical resistivity can be adopted to indirectly assess the mechanical behaviour of unsaturated compacted soil after wetting-drying cycles.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3