The Application of Artificial Intelligence Technology in Art Teaching Taking Architectural Painting as an Example

Author:

Li Jing1,Zhang Bingyu2ORCID

Affiliation:

1. College of Urban and Rural Construction, Shaoyang University, Shaoyang, Hunan, China

2. College of Arts, Huzhou University, Huzhou, Zhejiang, China

Abstract

In the current era of technology, artificial intelligence has grown rapidly in such a way that it has established its presence in all fields. The purpose of artificial intelligence is to reduce human intervention and complete tasks with an enhanced result. In this research, we are going to study the application of artificial intelligence technology in art teaching, taking architectural painting as an example. Architectural painting is a type of painting that focuses only on architecture, including indoor and outdoor views of the buildings. In earlier stages, architecture was shown only in the background of paintings that had different objects as the main subject. Later, architecture itself became a mainstream genre in the field of painting. As has been shown by other researchers, the latest technologies such as Internet technology, wireless sensor networks (WSNs), and artificial intelligence like deep learning technologies are deployed in art teaching. Artificial intelligence has made teaching easier. This proposed system makes use of Internet technology, WSNs, artificial intelligence, and lightweight deep learning models in the field of art teaching. The teaching method is enhanced by adapting to this new technology. For performing the analysis of the proposed system, the Limited Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) art algorithm is implemented. This L-BFGS algorithm focuses on finding the local minima in any given application. In this art teaching of architectural painting, the proposed algorithm will aid in explaining the minute works to be noted while doing the artwork. The proposed algorithm is then compared with the traditional Gradient Descent, Adam, and Adadelta algorithms. From the results, it can be observed that the proposed algorithm has achieved accuracy of 97% and 98% in the training and testing phases, respectively.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3