Multilayer Orthogonal Beamforming for Priority-Guaranteed Wireless Communications

Author:

Xie Jindong1,Zhang Jun1,Bai Lin1

Affiliation:

1. School of Electronic and Information Engineering, Beihang University, Beijing 100191, China

Abstract

To utilize the benefits of cellular systems, wireless machine-to-machine (M2M) communications over cellular systems are being widely considered. In order to support efficient spectrum sharing between M2M devices and normal mobile users, in the paper, we propose a multilayer orthogonal beamforming (MOBF) scheme for M2M communications over orthogonal frequency division multiple access (OFDMA-) based cellular systems. Using MOBF, each subcarrier in OFDMA systems could be efficiently reused by both normal mobile users and machine-type devices which are organized into multiple virtual layers. The users located in higher layers (e.g., mobile users) are not to be interfered by those in lower layers (e.g., machine devices). To improve the performance, the orthogonal deficiency (OD-) based user selection is carried out, where the intralayer fairness and quasimaximal performance can be guaranteed, simultaneously. Moreover, the signal-to-interference plus noise ratio (SINR) is investigated to measure the performance lower bound of different layers. It is demonstrated by both theoretical and numerical results that the proposed approach provides a stable SINR performance for each layer, that is, the interference free ability from lower level layers.

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. User Association and Scheduling Based on Auction in Multi-Cell MU-MIMO Systems;IEEE Transactions on Wireless Communications;2018-06

2. SDMA-Based Aeronautical Machine-to-Machine Communications under SINR Constraints;International Journal of Distributed Sensor Networks;2013-12-01

3. Secure Beamforming via Amplify-and-Forward Relays in Machine-to-Machine Communications;International Journal of Distributed Sensor Networks;2013-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3