Secure Beamforming via Amplify-and-Forward Relays in Machine-to-Machine Communications

Author:

Liu Zhongjian1ORCID,Zhang Xiaoning1,Bai Lin2ORCID,Chen Chen1,Xiang Haige1ORCID

Affiliation:

1. State Key Laboratory of Advanced Optical Communication Systems and Networks, Peking University, Beijing 100871, China

2. School of Electronic and Information Engineering, Beihang University, Beijing 100191, China

Abstract

We consider the collaborative use of amplify-and-forward relays to form a beamforming system and provide physical layer security for a wireless machine-to-machine (M2M) communication network. We investigate two objectives: (i) the achievable secrecy rate maximization subject to the relay power constraint and (ii) the relay transmit power minimization under a secrecy rate constraint. For the first objective, we propose a secrecy rate maximization (SRM) beamforming scheme. The secrecy rate maximization problem can be formed into a two-level optimization problem and we solve it using semidefinite relaxation (SDR) techniques. To reduce the complexity of the SRM beamforming scheme, a virtual eavesdropper-based SRM (VE-SRM) beamforming scheme is proposed, in which we hypothesize a virtual eavesdropper instead of all eavesdroppers and maximize the secrecy rate according to the virtual eavesdropper. In addition, for the second objective, we design a relay power minimization (RPM) beamforming scheme, in which an iterative algorithm combining the SDR technology and the gradient-based method is devised by studying the convexity of the RPM problem. By relaxing the constraints of the RPM beamforming scheme, we propose a virtual eavesdropper-based RPM (VERPM) beamforming scheme, which reduces the multivariate RPM problem to a problem of a single variable, and thus an analytical solution is obtained. Our proposed beamforming designs can work well even if the number of eavesdroppers is larger than that of relays, while the existing schemes, for example, the null-space beamforming schemes, cannot work under this condition. Simulation results are presented to demonstrate the significance of performance improvements with the SRM and RPM beamforming schemes. It is also shown that the virtual eavesdropper approaches significantly reduce the complexity with acceptable performance degradation.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3