Surgical Treatment for Posterior Dislocation of Hip Combined with Acetabular Fractures Using Preoperative Virtual Simulation and Three-Dimensional Printing Model-Assisted Precontoured Plate Fixation Techniques

Author:

Li Yuan-Ta1,Hung Chun-Chi1,Chou Yu-Ching2,Chen Jia-En3,Wu Chia-Chun1,Shen Hsain-Chung1,Yeh Tsu-Te1ORCID

Affiliation:

1. Department of Orthopaedic Surgery, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan

2. School of Public Health, National Defense Medical Center, Taipei, Taiwan

3. Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan

Abstract

Background and Purpose. Hip dislocation combined with acetabular fracture remains a challenging condition for orthopedic surgeons. In this study, we utilized a computer-assisted simulation and three-dimensional (3D) printing technology to treat patients with hip dislocation combined with acetabular fracture. We hypothesized that the 3D printing-assisted method would shorten the internal fixation time and surgical time. Methods. We retrospectively reviewed 16 patients diagnosed with traumatic posterior dislocation of hip combined with acetabular fractures and treated with plate fixation from September 2013 to August 2017. Patients were divided into two groups: (1) traditional method and (2) 3D printing groups. In the traditional method group, the plates were contoured during the surgery, whereas in the 3D printing group, the patient’s pelvic computed tomography image was transformed to the 3D medical image software for processing preoperatively. The fracture reduction was simulated by the computer. Thereafter, the 1:1 scale 3D printing model was used to design the surgical plan and contour patient-specific plates preoperatively. Results. The internal fixation time was significantly shorter in the 3D printing group than in the traditional method group (-33 min, P<0.05). The mean operative time was shorter than that in the traditional method group (-43 min). However, blood loss and postoperative radiograph results were similar between the groups. The complication rate was lower in the 3D printing group (2/7) than in the traditional method group (5/9). Interpretation. Computer-assisted simulation with 3D printing technology is a more efficient method for treating hip dislocation combined with acetabular fractures.

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3