Enhancement of Macrophage Function by the Antimicrobial Peptide Sublancin Protects Mice from Methicillin-Resistant Staphylococcus aureus

Author:

Wang Shuai12,Ye Qianhong1,Wang Ke3,Zeng Xiangfang1,Huang Shuo1,Yu Haitao1,Ge Qing3,Qi Desheng2,Qiao Shiyan1ORCID

Affiliation:

1. State Key Laboratory of Animal Nutrition, Beijing Key Laboratory of Biofeed Additives, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, China

2. Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China

3. Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China

Abstract

Methicillin-resistant Staphylococcus aureus (MRSA) is the major pathogen responsible for community and hospital bacterial infections. Sublancin, a glucosylated antimicrobial peptide isolated from Bacillus subtilis 168, possesses antibacterial infective effects. In this study, we investigated the role and anti-infection mechanism of sublancin in a mouse model of MRSA-induced sublethal infection. Sublancin could modulate innate immunity by inducing the production of IL-1β, IL-6, TNF-α, and nitric oxide, enhancing phagocytosis and MRSA-killing activity in both RAW264.7 cells and mouse peritoneal macrophages. The enhanced macrophage function by the peptide in vitro correlated with stronger protective activity in vivo in the MRSA-invasive sublethal infection model. Macrophage activation by sublancin was found to be partly dependent on TLR4 and the NF-κB and MAPK signaling pathways. Moreover, oral administration of sublancin increased the frequencies of CD4+ and CD8+ T cells in mesenteric lymph nodes. The protective activity of sublancin was associated with in vivo augmenting phagocytic activity of peritoneal macrophages and partly improving T cell-mediated immunity. Macrophages thus represent a potentially pivotal and novel target for future development of innate defense regulator therapeutics against S. aureus infection.

Funder

Special Fund for Agroscientific Research in the Public Interest

Publisher

Hindawi Limited

Subject

Immunology,General Medicine,Immunology and Allergy

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3