RBF Neural Network Backstepping Sliding Mode Adaptive Control for Dynamic Pressure Cylinder Electrohydraulic Servo Pressure System

Author:

Deng Pan12ORCID,Zeng Liangcai1,Liu Yang2

Affiliation:

1. School of Machinery and Automation, Wuhan University of Science and Technology, Wuhan 430081, China

2. Wuhan Branch of Baosteel Central Research Institute (R&D Center of Wuhan Iron & Steel Co., Ltd.), Wuhan 430081, China

Abstract

According to the hydraulic principle diagram of the subgrade test device, the dynamic pressure cylinder electrohydraulic servo pressure system math model and AMESim simulation model are established. The system is divided into two parts of the dynamic pressure cylinder displacement subsystem and the dynamic pressure cylinder output pressure subsystem. On this basis, a RBF neural network backstepping sliding mode adaptive control algorithm is designed: using the double sliding mode structure, the two RBF neural networks are used to approximate the uncertainties in the two subsystems, provide design methods of RBF sliding mode adaptive controller of the dynamic pressure cylinder displacement subsystem and RBF backstepping sliding mode adaptive controller of the dynamic pressure cylinder output pressure subsystem, and give the two RBF neural network weight vector adaptive laws, and the stability of the algorithm is proved. Finally, the algorithm is applied to the dynamic pressure cylinder electrohydraulic servo pressure system AMESim model; simulation results show that this algorithm can not only effectively estimate the system uncertainties, but also achieve accurate tracking of the target variables and have a simpler structure, better control performance, and better robust performance than the backstepping sliding mode adaptive control (BSAC).

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Reference26 articles.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3