Affiliation:
1. School of Machinery and Automation, Wuhan University of Science and Technology, Wuhan 430081, China
2. Wuhan Branch of Baosteel Central Research Institute (R&D Center of Wuhan Iron & Steel Co., Ltd.), Wuhan 430081, China
Abstract
According to the hydraulic principle diagram of the subgrade test device, the dynamic pressure cylinder electrohydraulic servo pressure system math model and AMESim simulation model are established. The system is divided into two parts of the dynamic pressure cylinder displacement subsystem and the dynamic pressure cylinder output pressure subsystem. On this basis, a RBF neural network backstepping sliding mode adaptive control algorithm is designed: using the double sliding mode structure, the two RBF neural networks are used to approximate the uncertainties in the two subsystems, provide design methods of RBF sliding mode adaptive controller of the dynamic pressure cylinder displacement subsystem and RBF backstepping sliding mode adaptive controller of the dynamic pressure cylinder output pressure subsystem, and give the two RBF neural network weight vector adaptive laws, and the stability of the algorithm is proved. Finally, the algorithm is applied to the dynamic pressure cylinder electrohydraulic servo pressure system AMESim model; simulation results show that this algorithm can not only effectively estimate the system uncertainties, but also achieve accurate tracking of the target variables and have a simpler structure, better control performance, and better robust performance than the backstepping sliding mode adaptive control (BSAC).
Funder
National Natural Science Foundation of China
Subject
Multidisciplinary,General Computer Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献