Neural Network-Based Dual-Cylinder Synchronous Control of a Multi-Link Erection Mechanism

Author:

Zhu Weilin,Ge Yaowen,Deng Wenxiang,Li Lan,Liu Xiangxin,Zhang Jialin,Yao Jianyong

Abstract

A dual-cylinder erection mechanism, in which two telescopic cylinders physically connect to a load, is a nonlinear system with model uncertainties and coupled dynamics. In this paper, a novel synchronous control algorithm with thrust-allocation law is proposed for eliminating the excessive internal forces caused by the unbalanced rotation and lateral moments during the erection process. With regulated internal forces, the “pull and drag” issue is attenuated and better synchronization performance is attained. For improved tracking accuracy, the inter-stage collision dynamics of the telescopic cylinder are considered for model compensation to enhance stage-changing and in-position performance. A radial basis function (RBF) neural network is utilized to estimate the model uncertainties and external disturbances, which alleviates reliance upon the accuracy of a system model for controller implementation. As a result, theoretical analysis revealed that the semi-global asymptotic stability and synchronized motion performance with decreased internal forces can be achieved via the presented synchronous controller with thrust-allocation strategy. Contrasting simulations were implemented on a multi-link erection mechanism and the results confirmed the superiority and effectiveness of the proposed synchronous control algorithm.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3