Departure Time Choice (DTC) Behavior for Intercity Travel during a Long-Holiday in Bangkok, Thailand

Author:

Chaichannawatik Bhawat1ORCID,Kanitpong Kunnawee2,Limanond Thirayoot3

Affiliation:

1. Doctoral student, Asian Institute of Technology, Thailand

2. Lecturer, Asian Institute of Technology, Thailand

3. Visiting Lecturer, Asian Institute of Technology, Thailand

Abstract

Time-of-day (TOD) or departure time choice (DTC) has become an interesting issue over two decades. Many researches have intensely focused on time-of-day or departure time choice study, especially workday departures. However, the travel behavior during long-holiday/intercity travel has received relatively little attention in previous studies. This paper shows the characteristics of long-holiday intercity travel patterns based on 2012 New Year data collected in Thailand with a specific focus on departure time choice of car commuters due to traffic congestion occurring during the beginning of festivals. 590 interview data were analyzed to provide more understanding of general characteristics of DTC behavior for intercity travel at the beginning of a Bangkok long-holiday. Moreover, the Multinomial Logit Model (MNL) was used to find the car-based DTC model. The results showed that travelers tend to travel at the peak period when the parameters of personal and household are not so significant, in contrast to the trip-related characteristics and holiday variables that play important roles in traveler decision on departure time choice. Finally, some policies to distribute travel demand and reduce the repeatable traffic congestion at the beginning of festivals are recommended.

Funder

Kasem Bundit University

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Reference26 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3