Lung Cancer Survival Prediction using Ensemble Data Mining on Seer Data

Author:

Agrawal Ankit1,Misra Sanchit1,Narayanan Ramanathan1,Polepeddi Lalith1,Choudhary Alok1

Affiliation:

1. Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL, USA

Abstract

We analyze the lung cancer data available from the SEER program with the aim of developing accurate survival prediction models for lung cancer. Carefully designed preprocessing steps resulted in removal/modification/splitting of several attributes, and 2 of the 11 derived attributes were found to have significant predictive power. Several supervised classification methods were used on the preprocessed data along with various data mining optimizations and validations. In our experiments, ensemble voting of five decision tree based classifiers and meta-classifiers was found to result in the best prediction performance in terms of accuracy and area under the ROC curve. We have developed an on-line lung cancer outcome calculator for estimating the risk of mortality after 6 months, 9 months, 1 year, 2 year and 5 years of diagnosis, for which a smaller non-redundant subset of 13 attributes was carefully selected using attribute selection techniques, while trying to retain the predictive power of the original set of attributes. Further, ensemble voting models were also created for predicting conditional survival outcome for lung cancer (estimating risk of mortality after 5 years of diagnosis, given that the patient has already survived for a period of time), and included in the calculator. The on-line lung cancer outcome calculator developed as a result of this study is available at http://info.eecs.northwestern.edu:8080/LungCancerOutcomeCalculator/.

Funder

National Science Foundation

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3