An Interpretable Two-Phase Modeling Approach for Lung Cancer Survivability Prediction

Author:

Sedighi-Maman Zahra,Heath Jonathan J.

Abstract

Although lung cancer survival status and survival length predictions have primarily been studied individually, a scheme that leverages both fields in an interpretable way for physicians remains elusive. We propose a two-phase data analytic framework that is capable of classifying survival status for 0.5-, 1-, 1.5-, 2-, 2.5-, and 3-year time-points (phase I) and predicting the number of survival months within 3 years (phase II) using recent Surveillance, Epidemiology, and End Results data from 2010 to 2017. In this study, we employ three analytical models (general linear model, extreme gradient boosting, and artificial neural networks), five data balancing techniques (synthetic minority oversampling technique (SMOTE), relocating safe level SMOTE, borderline SMOTE, adaptive synthetic sampling, and majority weighted minority oversampling technique), two feature selection methods (least absolute shrinkage and selection operator (LASSO) and random forest), and the one-hot encoding approach. By implementing a comprehensive data preparation phase, we demonstrate that a computationally efficient and interpretable method such as GLM performs comparably to more complex models. Moreover, we quantify the effects of individual features in phase I and II by exploiting GLM coefficients. To the best of our knowledge, this study is the first to (a) implement a comprehensive data processing approach to develop performant, computationally efficient, and interpretable methods in comparison to black-box models, (b) visualize top factors impacting survival odds by utilizing the change in odds ratio, and (c) comprehensively explore short-term lung cancer survival using a two-phase approach.

Funder

Adelphi University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference41 articles.

1. Cancer https://www.who.int/cancer/en

2. Key Statistics for Lung Cancer? https://www.cancer.org/cancer/lung-cancer/about/key-statistics.html

3. Lung cancer: Biology and treatment options

4. Surveillance, Epidemiology, and End Results (SEER) Program Research Data (1975–2018), National Cancer Institute, DCCPS, Surveillance Research Program, Based on the November 2020 Submission,2021

5. The Positive Lymph Node Ratio Predicts Survival in T1−4N1−3M0 Non-Small Cell Lung Cancer: A Nomogram Using the SEER Database

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3