Digital Forensics Use Case for Glaucoma Detection Using Transfer Learning Based on Deep Convolutional Neural Networks

Author:

Latif Jahanzaib1,Tu Shanshan1ORCID,Xiao Chuangbai1,Rehman Sadaqat Ur2,Sadiq Mazhar3ORCID,Farhan Muhammad3

Affiliation:

1. Engineering Research Center of Intelligent Perception and Autonomous Control, Faculty of Information Technology, Beijing University of Technology, 100124 Beijing, China

2. Department of Computer Science, Namal Institute, Mianwali 42250, Pakistan

3. Department of Computer Science, COMSATS University Islamabad, Sahiwal Campus, Islamabad 57000, Pakistan

Abstract

In parallel with the development of various emerging fields such as computer vision and related technologies, e.g., iris identification and glaucoma detection, criminals are developing their methods. It is the foremost reason for the blindness of human beings that affects the eye’s optic nerve. Fundus photography is carried out to examine this eye disease. Medical experts evaluate fundus photographs, which is a time-consuming visual inspection. Most current systems for automated glaucoma detection in fundus images rely on segmentation-based features nuanced by the underlying segmentation methods. Convolutional neural networks (CNNs) are powerful tools for solving image classification tasks, as they can learn highly discriminative features from raw pixel intensities. However, their applicability to medical image analysis is limited by the nonavailability of large sets of annotated data required for training. In this work, we aim to accelerate this process using a computer-aided diagnosis of this severe disease with the help of transfer learning based on deep convolutional neural networks. We have suggested the Inception V-3 approach for image classification based on convolution neural networks. Our developed model has the potential to address this CNN model’s problem of classification accuracy, and with imaging data, our proposed method outperforms recent state-of-the-art approaches. The case study for digital forensics is an essential component of emerging technologies, and hence glaucoma detection plays a vital role in it.

Funder

Natural Science Foundation of Beijing Municipality

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3