Advancements in intrusion detection: A lightweight hybrid RNN-RF model

Author:

Khan Nasrullah,Mohmand Muhammad Ismail,Rehman Sadaqat urORCID,Ullah Zia,Khan Zahid,Boulila Wadii

Abstract

Computer networks face vulnerability to numerous attacks, which pose significant threats to our data security and the freedom of communication. This paper introduces a novel intrusion detection technique that diverges from traditional methods by leveraging Recurrent Neural Networks (RNNs) for both data preprocessing and feature extraction. The proposed process is based on the following steps: (1) training the data using RNNs, (2) extracting features from their hidden layers, and (3) applying various classification algorithms. This methodology offers significant advantages and greatly differs from existing intrusion detection practices. The effectiveness of our method is demonstrated through trials on the Network Security Laboratory (NSL) and Canadian Institute for Cybersecurity (CIC) 2017 datasets, where the application of RNNs for intrusion detection shows substantial practical implications. Specifically, we achieved accuracy scores of 99.6% with Decision Tree, Random Forest, and CatBoost classifiers on the NSL dataset, and 99.8% and 99.9%, respectively, on the CIC 2017 dataset. By reversing the conventional sequence of training data with RNNs and then extracting features before applying classification algorithms, our approach provides a major shift in intrusion detection methodologies. This modification in the pipeline underscores the benefits of utilizing RNNs for feature extraction and data preprocessing, meeting the critical need to safeguard data security and communication freedom against ever-evolving network threats.

Publisher

Public Library of Science (PLoS)

Reference80 articles.

1. An indirect eavesdropping attack of keystrokes on touch screen through acoustic sensing;Jiadi Yu;IEEE Transactions on Mobile Computing,2019

2. Broadband cancellation method in an adaptive co-site interference cancellation system;Yunhao Jiang;International Journal of Electronics,2022

3. A novel deep learning-based intrusion detection system for IOT networks;Albara Awajan;Computers,2023

4. Task Allocation of Multiple Unmanned Aerial Vehicles Based on Deep Transfer Reinforcement Learning;Y. Yin;Drones,2022

5. A Flow Feedback Traffic Prediction Based on Visual Quantified Features;J. Chen;IEEE Transactions on Intelligent Transportation Systems,2023

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Process Capability Analysis of Prediction Data of ML Algorithms;Ekonomi İşletme ve Maliye Araştırmaları Dergisi;2024-08-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3