Task Allocation of Multiple Unmanned Aerial Vehicles Based on Deep Transfer Reinforcement Learning

Author:

Yin Yongfeng,Guo Yang,Su Qingran,Wang Zhetao

Abstract

With the development of UAV technology, the task allocation problem of multiple UAVs is remarkable, but most of these existing heuristic methods are easy to fall into the problem of local optimization. In view of this limitation, deep transfer reinforcement learning is applied to the task allocation problem of multiple unmanned aerial vehicles, which provides a new idea about solving this kind of problem. The deep migration reinforcement learning algorithm based on QMIX is designed. The algorithm first compares the target task with the source task in the strategy base to find the task with the highest similarity, and then migrates the network parameters obtained from the source task after training, stored in the strategy base, so as to accelerate the convergence of the QMIX algorithm. Simulation results show that the proposed algorithm is significantly better than the traditional heuristic method of allocation in terms of efficiency and has the same running time.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Reference20 articles.

1. UAV Obstacle Avoidance Algorithm to Navigate in Dynamic Building Environments

2. Application of UAV in Search and Rescue Actions in Underground Mine—A Specific Sound Detection in Noisy Acoustic Signal

3. CNN-Based Dense Monocular Visual SLAM for Real-Time UAV Exploration in Emergency Conditions

4. Hybrid particle swarm optimization algorithm for cooperative task allocation of multiple UAVs;Zhang;J. Aeronaut.,2022

5. Dynamic task allocation of UAV cluster imitating gray wolf cooperative predation behavior;Peng;Control Theory Appl.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3