Evolutionary Prediction of Nonstationary Event Popularity Dynamics of Weibo Social Network Using Time-Series Characteristics

Author:

Chen Xiaoliang1ORCID,Lan Xiang2ORCID,Wan Jihong3ORCID,Lu Peng4ORCID,Yang Ming1ORCID

Affiliation:

1. School of Computer and Software Engineering, Xihua University, Chengdu 610039, China

2. Institute of Statistical Science, Sichuan Provincial Bureau of Statistics, Chengdu 610041, China

3. Institute of Artificial Intelligence, School of Information Science and Technology, Southwest Jiaotong University, Chengdu 611756, China

4. Department of Computer Science and Operations Research, University of Montreal, Montreal QC H3C3J7, Canada

Abstract

A growing number of web users around the world have started to post their opinions on social media platforms and offer them for share. Building a highly scalable evolution prediction model by means of evolution trend volatility plays a significant role in the operations of enterprise marketing, public opinion supervision, personalized recommendation, and so forth. However, the historical patterns cannot cover the systematical time-series dynamic and volatility features in the prediction problems of a social network. This paper aims to investigate the popularity prediction problem from a time-series perspective utilizing dynamic linear models. First, the stationary and nonstationary time series of Weibo hot events are detected and transformed into time-dependent variables. Second, a systematic general popularity prediction model N- SEP 2 M is proposed to recognize and predict the nonstationary event propagation of a hot event on the Weibo social network. Third, the explanatory compensation variable social intensity (SI) is introduced to optimize the model N- SEP 2 M. Experiments on three Weibo hot events with different subject classifications show that our prediction approach is effective for the propagation of hot events with burst traffic.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Modeling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3