Distance-Based Congestion Pricing with Day-to-Day Dynamic Traffic Flow Evolution Process

Author:

Cheng Qixiu1,Xing Jiping1,Yi Wendy2,Liu Zhiyuan1ORCID,Fu Xiao3ORCID

Affiliation:

1. Jiangsu Key Laboratory of Urban ITS, Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, Southeast University, China

2. School of Engineering and Advanced Technology, College of Sciences, Massey University, Auckland, New Zealand

3. School of Transportation, Southeast University, China

Abstract

This paper studies the distance-based congestion pricing in a network considering the day-to-day dynamic traffic flow evolution process. It is well known that, after an implementation or adjustment of a new congestion toll scheme, the network environment will change and traffic flows will be nonequilibrium in the following days; thus it is not suitable to take the equilibrium-based indexes as the objective of the congestion toll. In the context of nonequilibrium state, prior research proposed a mini–max regret model to solve the distance-based congestion pricing problem in a network considering day-to-day dynamics. However, it is computationally demanding due to the calculation of minimal total travel cost for each day among the whole planning horizon. Therefore, in order to overcome the expensive computational burden problem and make the robust toll scheme more practical, we propose a new robust optimization model in this paper. The essence of this model, which is an extension of our prior work, is to optimize the worst condition among the whole planning period and ameliorate severe traffic congestions in some bad days. Firstly, a piecewise linear function is adopted to formulate the nonlinear distance toll, which can be encapsulated to a day-to-day dynamics context. A very clear and concise model named logit-type Markov adaptive learning model is then proposed to depict commuters’ day-to-day route choice behaviors. Finally, a robust optimization model which minimizes the maximum total travel cost among the whole planning horizon is formulated and a modified artificial bee colony algorithm is developed for the robust optimization model.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Modeling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3