Influence of Compression Thresholds and Maximum Power Output on Speech Understanding with Bone-Anchored Hearing Systems

Author:

Gawliczek Tom12ORCID,Wimmer Wilhelm12ORCID,Caversaccio Marco1ORCID,Kompis Martin1ORCID

Affiliation:

1. Department of ENT, Head and Neck Surgery, Inselspital Bern, University of Bern, 3010 Bern, Switzerland

2. Hearing Research Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern 3008, Switzerland

Abstract

Bone-anchored hearing systems (BAHS) transmit sound via osseointegrated implants behind the ear. They are used to treat patients with conductive or mixed hearing loss, but speech understanding may be limited especially in users with substantial additional cochlear hearing losses. In recent years, BAHS with higher maximum power output (MPO) and more advanced digital processing including loudness compression have become available. These features may be useful to increase speech understanding in users with mixed hearing loss. We have tested the effect of 4 combinations of two different MPO levels (highest level available and level reduced by 12 dB) and two different compression thresholds (CT) levels (50 dB and 65 dB sound pressure level) in 12 adult BAHS users on speech understanding in quiet and in noise. We have found that speech understanding in quiet was not influenced significantly by any of the changes in these two fitting parameters. In contrast, in users with average bone-conduction (BC) threshold of 25 dB or more, speech understanding in noise was improved by +0.8 dB to +1.1 dB ( p < 0.03 ) when using the higher MPO level. In this user group, there may be an additional, but very small benefit of +0.1 dB to +0.4 dB when using the lower rather than the higher CT value, but the difference was not statistically significant ( p > 0.27 ). In users with better average BC thresholds than 25 dB, none of the improvement was statistically significant. Higher MPOs and possibly, to a lesser degree, lower CTs seem to be able to improve speech understanding in noise in users with higher BC thresholds, but even their combined effect seems to be limited.

Funder

Cochlear, Europe

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3