Learning-Based Spectrum Sensing for Cognitive Radio Systems

Author:

Hassan Yasmin1,El-Tarhuni Mohamed1ORCID,Assaleh Khaled1

Affiliation:

1. Department of Electrical Engineering, American University of Sharjah, P.O. Box 26666, Sharjah, UAE

Abstract

This paper presents a novel pattern recognition approach to spectrum sensing in collaborative cognitive radio systems. In the proposed scheme, discriminative features from the received signal are extracted at each node and used by a classifier at a central node to make a global decision about the availability of spectrum holes for use by the cognitive radio network. Specifically, linear and polynomial classifiers are proposed with energy, cyclostationary, or coherent features. Simulation results in terms of detection and false alarm probabilities of all proposed schemes are presented. It is concluded that cyclostationary-based schemes are the most reliable in terms of detecting primary users in the spectrum, however, at the expense of a longer sensing time compared to coherent based schemes. Results show that the performance is improved by having more users collaborating in providing features to the classifier. It is also shown that, in this spectrum sensing application, a linear classifier has a comparable performance to a second-order polynomial classifier and hence provides a better choice due to its simplicity. Finally, the impact of the observation window on the detection performance is presented.

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Learning-Based Secure Spectrum Sharing for Intelligent IoT Networks;2024 25th International Symposium on Quality Electronic Design (ISQED);2024-04-03

2. A review of spectrum sensing in modern cognitive radio networks;Telecommunication Systems;2023-11-24

3. Modified Cuckoo Search and Hill Climbing Algorithm Based Spectrum Hole Detection in Cognitive Radio Networks;Journal of Electrical Engineering & Technology;2023-05-18

4. A Learning Model for Channel Selection and Allocation in Cognitive Radio Networks;Proceedings of International Conference on Data, Electronics and Computing;2023

5. Ensemble Classifier with Heterogenous Fusion Center for Cooperative Spectrum Sensing in Cognitive Radio;Journal of Interconnection Networks;2022-02-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3