Affiliation:
1. Acharya Nagrajuna University, Guntur, India
2. Department of ECE, Bapatla Engineering College, Bapatla, Andhra Pradesh, India
Abstract
Cooperative spectrum sensing (CSS) in a cognitive radio uses a fusion center, which receives local sensing decisions from multiple secondary users to predict whether primary user is present or absent. Therefore, an ensemble classifier with heterogenous fusion center (EC-HFC) is proposed in this work, where the ensemble classifier comprise three classification algorithms such as logistic regression (LR), support vector machine (SVM), and gaussian naive bayes (GNB). In addition, voting classifier with its variants also employed for finding the best suitable classifier. Further, the performance metrics such as accuracy, F1-score, area under the curve (AUC), probability of detection and probability of false alarm are computed for evaluating the performance of proposed ensemble classifier-based fusion center for cooperative spectrum sensing in cognitive radio. Finally, the obtained receiver operating characteristics (ROC) and extensive simulation results shows that proposed fusion center resulted in superior performance as compared to individual secondary users.
Publisher
World Scientific Pub Co Pte Ltd
Subject
Computer Networks and Communications
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献