Process Heating and Postannealing Effects on Microstructure and Hardness of the Sputtered Ni-P-Al Coatings

Author:

Su Yu-Ming1,Wu Chia-Che1ORCID,Wu Fan-Bean1

Affiliation:

1. Department of Materials Science and Engineering, National United University, A2-344R, Lienda, Kung-Ching-Li, Miaoli 36003, Taiwan

Abstract

Ternary Ni-P-Al alloy coating was fabricated by magnetron sputtering technique with a Ni-P/Al composite target source. The effects of thermal treatments, including deposition process heating and postannealing, on phase transformation phenomenon and related mechanical properties were investigated. The as-deposited coatings produced under process temperature below showed an amorphous/nanocrystalline microstructure. Significant crystallization of Ni matrix and precipitation of and compounds were observed for the coatings manufactured under high sputtering temperatures above . The amorphous Ni-P-Al coatings were postannealed from 500 to in vacuum environment for comparison. The amorphous feature of the Ni-P-Al coating remained unchanged under a high annealing temperature of , showing a superior thermal stability as compared to those fabricated under high process temperatures. Superior hardness was obtained for the post-annealed Ni-P-Al coatings due to volumetric constraint of crystallization and precipitation. On the other hand, the overaging phenomenon and subsequent degradation in hardness were found for the Ni-P-Al coatings fabricated under high-temperature deposition processes. The phase transformation mechanisms of the coatings through different thermal treatments were intensively discussed.

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3