Mathematical Modeling and Control of COVID-19 Using Super Twisting Sliding Mode and Nonlinear Techniques

Author:

Aljuboury Anwer S.12,Abedi Firas3,Shukur Hanan M.4,Hashim Zahraa Sabah5,Ibraheem Ibraheem Kasim6ORCID,Alkhayyat Ahmed7ORCID

Affiliation:

1. Continuing Education Center, Mustansiriyah University, Baghdad 14022, Iraq

2. Information Technology Unit, Hilla University College, Babylon 51001, Iraq

3. Department of Mathematics, College of Education, Al-zahraa University for Women, Karbala, Iraq

4. Computer Techniques Engineering Dept., Al-Kitab University, Kirkuk, Iraq

5. Department of Electrical Engineering, College of Engineering, University of Baghdad, Baghdad 10001, Iraq

6. Department of Computer Techniques Engineering, Dijlah University College, Baghdad 10001, Iraq

7. College of Technical Engineering, the Islamic University, Najaf, Iraq

Abstract

Since the outbreak of the COVID-19 epidemic, several control strategies have been proposed. The rapid spread of COVID-19 globally, allied with the fact that COVID-19 is a serious threat to people’s health and life, motivated many researchers around the world to investigate new methods and techniques to control its spread and offer treatment. Currently, the most effective approach to containing SARS-CoV-2 (COVID-19) and minimizing its impact on education and the economy remains a vaccination control strategy, however. In this paper, a modified version of the susceptible, exposed, infectious, and recovered (SEIR) model using vaccination control with a novel construct of active disturbance rejection control (ADRC) is thus used to generate a proper vaccination control scheme by rejecting those disturbances that might possibly affect the system. For the COVID-19 system, which has a unit relative degree, a new structure for the ADRC has been introduced by embedding the tracking differentiator (TD) in the control unit to obtain an error signal and its derivative. Two further novel nonlinear controllers, the nonlinear PID and a super twisting sliding mode (STC-SM) were also used with the TD to develop a new version of the nonlinear state error feedback (NLSEF), while a new nonlinear extended state observer (NLESO) was introduced to estimate the system state and total disturbance. The final simulation results show that the proposed methods achieve excellent performance compared to conventional active disturbance rejection controls.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3