Recurrent and Deep Learning Neural Network Models for DDoS Attack Detection

Author:

Sumathi S.1ORCID,Rajesh R.2ORCID,Lim Sangsoon3ORCID

Affiliation:

1. Department of Computer Science & Engineering, University V.O.C College of Engineering, Thoothukudi 628008, India

2. Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India

3. Department of Computer Engineering, Sungkyul University, Anyang 14097, Republic of Korea

Abstract

Distributed denial of service (DDoS) attack is a subclass of denial of service attack that performs severe attack in a cloud computing environment. It makes a malicious attempt to disturb the usual services of any network or server by using botnets. Hence, an efficient intrusion detection system (IDS) is essential to detect this attack. Some limitations in the existing IDS models for DDoS attack detection are delayed convergence, local stagnation issues, and local and global optimal trapping issues. These limitations are met by the recurrent neural network (RNN) and deep learning- (DL-) based proposed models that can utilize the previous states of the hidden neuron. The proposed research has used a long short-term memory (LSTM) recurrent neural network and autoencoder- and decoder-based deep learning strategy with gradient descent learning rule. The network parameters like weight vectors and bias coefficient are tuned optimally by employing the proposed a hybrid Harris Hawks optimization (HHO) and particle swarm optimization (PSO) algorithm. The proposed hybrid optimization algorithm selects the essential attributes, and the results obtained confirmed that the proposed LSTM and deep learning model outperformed all other models developed in the literature.

Funder

National Research Foundation of Korea

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3