Acoustic Scene Classification and Visualization of Beehive Sounds Using Machine Learning Algorithms and Grad-CAM

Author:

Kim Jaehoon1,Oh Jeongkyu2,Heo Tae-Young1ORCID

Affiliation:

1. Department of Information and Statistics, Chungbuk National University, Cheongju-si, Chungbuk 28644, Republic of Korea

2. Data Scientist Team, BEGAS Inc, Sejong‐daero 39, Jung-gu, Seoul 04513, Republic of Korea

Abstract

Honeybees play a crucial role in the agriculture industry because they pollinate approximately 75% of all flowering crops. However, every year, the number of honeybees continues to decrease. Consequently, numerous researchers in various fields have persistently attempted to solve this problem. Acoustic scene classification, using sounds recorded from beehives, is an approach that can be applied to detect changes inside beehives. This method can be used to determine intervals that threaten a beehive. Currently, studies on sound analysis, using deep learning algorithms integrated with various data preprocessing methods that extract features from sound signals, continue to be conducted. However, there is little insight into how deep learning algorithms recognize audio scenes, as demonstrated by studies on image recognition. Therefore, in this study, we used a mel spectrogram, mel-frequency cepstral coefficients (MFCCs), and a constant-Q transform to compare the performance of conventional machine learning models to that of convolutional neural network (CNN) models. We used the support vector machine, random forest, extreme gradient boosting, shallow CNN, and VGG-13 models. Using gradient-weighted class activation mapping (Grad-CAM), we conducted an analysis to determine how the best-performing CNN model recognized audio scenes. The results showed that the VGG-13 model, using MFCCs as input data, demonstrated the best accuracy (91.93%). Additionally, based on the precision, recall, and F1-score for each class, we established that sounds other than those from bees were effectively recognized. Further, we conducted an analysis to determine the MFCCs that are important for classification through the visualizations obtained by applying Grad-CAM to the VGG-13 model. We believe that our findings can be used to develop a monitoring system that can consistently detect abnormal conditions in beehives early by classifying the sounds inside beehives.

Funder

Ministry of Education

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference29 articles.

1. Colony Collapse Disorder: A Descriptive Study

2. Sub-lethal exposure to neonicotinoids impaired honey bees winterization before proceeding to colony collapse disorder;L. U. Chensheng;Bulletin of Insectology,2014

3. Mosquito detection with neural networks: the buzz of deep learning;I. Kiskin,2017

4. Recognition of pollen-bearing bees from video using convolutional neural network;I. F. Rodriguez

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3