A New Measure of Pulse Rate Variability and Detection of Atrial Fibrillation Based on Improved Time Synchronous Averaging

Author:

Ding Xiaodong1ORCID,Wang Yiqin1ORCID,Hao Yiming1ORCID,Lv Yi1ORCID,Chen Rui1ORCID,Yan Haixia1ORCID

Affiliation:

1. Shanghai Key Laboratory of Health Identification and Assessment, Laboratory of Traditional Chinese Medicine Four Diagnostic Information, Shanghai University of Traditional Chinese Medicine, Shanghai, China

Abstract

Background. Pulse rate variability monitoring and atrial fibrillation detection algorithms have been widely used in wearable devices, but the accuracies of these algorithms are restricted by the signal quality of pulse wave. Time synchronous averaging is a powerful noise reduction method for periodic and approximately periodic signals. It is usually used to extract single-period pulse waveforms, but has nothing to do with pulse rate variability monitoring and atrial fibrillation detection traditionally. If this method is improved properly, it may provide a new way to measure pulse rate variability and to detect atrial fibrillation, which may have some potential advantages under the condition of poor signal quality. Objective. The objective of this paper was to develop a new measure of pulse rate variability by improving existing time synchronous averaging and to detect atrial fibrillation by the new measure of pulse rate variability. Methods. During time synchronous averaging, two adjacent periods were regarded as the basic unit to calculate the average signal, and the difference between waveforms of the two adjacent periods was the new measure of pulse rate variability. 3 types of distance measures (Euclidean distance, Manhattan distance, and cosine distance) were tested to measure this difference on a simulated training set with a capacity of 1000. The distance measure, which can accurately distinguish regular pulse rate and irregular pulse rate, was used to detect atrial fibrillation on the testing set with a capacity of 62 (11 with atrial fibrillation, 8 with premature contraction, and 43 with sinus rhythm). The receiver operating characteristic curve was used to evaluate the performance of the indexes. Results. The Euclidean distance between waveforms of the two adjacent periods performs best on the training set. On the testing set, the Euclidean distance in atrial fibrillation group is significantly higher than that of the other two groups. The area under receiver operating characteristic curve to identify atrial fibrillation was 0.998. With the threshold of 2.1, the accuracy, sensitivity, and specificity were 98.39%, 100%, and 98.04%, respectively. This new index can detect atrial fibrillation from pulse wave signal. Conclusion. This algorithm not only provides a new perspective to detect AF but also accomplishes the monitoring of PRV and the extraction of single-period pulse wave through the same technical route, which may promote the popularization and application of pulse wave.

Funder

Shanghai Health Identification and Evaluation Laboratory Construction Funding

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modelling and Simulation,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3