Numerical Simulation and Validation for Early Core Degradation Phase under Severe Accidents

Author:

Zhan Dekui1,Zhao Xinhai1ORCID,Xia Shaoxiong1,Chen Peng1,Chen Huandong2

Affiliation:

1. China Nuclear Power Technology Research Institute, Shenzhen 518000, China

2. Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai 519000, China

Abstract

Early core degradation determines the amount of hydrogen generated by cladding oxidation as well as the temperature, the mass, and the composition of corium that further relocates into the lower head of reactor pressure vessel (RPV), which is essential for the effectiveness analysis of in-vessel retention (IVR) and hydrogen recombiners. In this paper, the mechanisms of controlling phenomena in the early phase of core degradation are analysed at first. Then, numerical models adopted to calculate (1) core heating up, (2) cladding oxidation, (3) dissolution between molten zirconium and fuel pellets, and (4) formation of a molten pool in the core active section are presented. Compared with integral codes for severe accident analysis (such as MAAP and MELCOR), the models in this paper are established at the fuel pin level and the calculation is performed in 3D, which can capture the detail local phenomena during the core degradation and eliminate the average effect due to equivalent rings used in integral codes. In addition, most of the control equations in this paper are calculated by implicit schemes, which can improve the accuracy and stability of the calculation. In the simulation, the calculation oxidation is calculated by using the oxygen diffusion model, while the dissolution is calculated with Kim, Hayward, Hofmann, and IBRAE models to perform uncertainty analysis. For the validation, the cladding oxidation model is verified by Olander theoretical cases in the conditions of both steam-rich and steam-starved. The dissolution models are validated by the RIAR experiment. The code is overall verified by Phebus FPT0 on the integral phase of core early degradation. According to the simulation results, it can be inferred that the dissolution reaction between the molten zirconium and fuel pellets is the main reason for the melting of UO2 at low temperature. In the case of starved steam, part of the fuel pellets can melt down even at 2248 K and relocate to the bottom of the core, which is much lower than the melting point of UO2 (3113 K).

Funder

National Key R&D Program of China

Publisher

Hindawi Limited

Subject

Nuclear Energy and Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3