PPARγ Antagonizes Hypoxia-Induced Activation of Hepatic Stellate Cell through Cross Mediating PI3K/AKT and cGMP/PKG Signaling

Author:

Zhang Qinghui1ORCID,Xiang Shihao2,Liu Qingqian1,Gu Tao1,Yao Yongliang1,Lu Xiaojie3ORCID

Affiliation:

1. Department of Clinical Laboratory, Kunshan First People’s Hospital, Affiliated to Jiangsu University, Kunshan, Jiangsu Province 215300, China

2. Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200336, China

3. Department of Liver Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China

Abstract

Background and Aims. Accumulating evidence reveals that PPARγ plays a unique role in the regulation of hepatic fibrosis and hepatic stellate cells (HSCs) activation. This study was aimed at investigating the role of PPARγ in hypoxia-induced hepatic fibrogenesis and its possible mechanism. Methods. Rats used for CCl4-induced hepatic fibrosis model were exposed to hypoxia for 8 hours each day. Rats exposed to hypoxia were treated with or without the PPARγ agonist rosiglitazone. Liver sections were stained with HE and Sirius red staining 8 weeks later. HSCs were exposed to hypoxic environment in the presence or absence of rosiglitazone, and expression of PPARγ and two fibrosis markers, α-SMA and desmin, were measured using western blot and immunofluorescence staining. Next, levels of PPARγ, α-SMA, and desmin as well as PKG and cGMP activity were detected using PI3K/AKT and a cGMP activator or inhibitor. Results. Hypoxia promoted the induction and progress of hepatic fibrosis and HSCs activation. Meanwhile, rosiglitazone significantly antagonized the effects induced by hypoxia. Signaling by sGC/cGMP/PKG promoted the inhibitory effect of PPARγ on hypoxia-induced activation of HSCs. Moreover, PI3K/AKT signaling or PDE5 blocked the above response of PPARγ. Conclusion. sGC/cGMP/PKG and PI3K/AKT signals act on PPARγ synergistically to attenuate hypoxia-induced HSC activation.

Funder

Science and Technology Commission of Shanghai Municipality

Publisher

Hindawi Limited

Subject

Pharmacology (medical),Drug Discovery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3