Design and Research of Low-Cost and Self-Adaptive Terrestrial Laser Scanning for Indoor Measurement Based on Adaptive Indoor Measurement Scanning Strategy and Structural Characteristics Point Cloud Segmentation

Author:

Zhang Zhongyue1ORCID,Zhou Huixing12ORCID,Wang Shun3ORCID,Xu Chongwen1ORCID,Lv Yannan1ORCID

Affiliation:

1. School of Mechanical-Electronic and Vehicle Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China

2. Beijing Engineering Research Center of Monitoring for Construction Safety, Beijing 100044, China

3. School of Civil and Transportation Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China

Abstract

Nowadays, TLS (terrestrial laser scanning) has been a relatively mature measuring equipment categorized to indoor measuring robots, but it is not widely adopted in indoor construction measurement at present. What accounts for its limited application are as follows: (1) the high cost of high-accuracy laser LIDAR and (2) existing TLS equipment does not possess self-adaptation scanning planning and takes no account of efficiency of point cloud processing and consumption of computing power. This paper proposes a novel TLS equipment and a high-efficiency point cloud processing method customized for the novel equipment, with purpose to achieve self-adaption measurement on the basis of indoor characteristics of construction during civil engineering at low cost. This paper mainly presents two parts of innovations: (1) for planning of scanning, the novel TLS features planning sampling density of scanning according to room size and converting scanning data from poses to point clouds, and (2) for processing of point clouds, this paper proposes two novel segmentation algorithms, namely, “on-boundary segmentation algorithm” and “on-angular-distance segmentation algorithm,” based on indoor spatial structure features and characteristics of TLS. Besides, this paper presents modified RANSAC-TLS (random sample consensus-total least squares) plane fitting algorithm, on basis of TLS point cloud distribution characteristics and spatial transformation. Through actual measurement test, it is concluded that the “on-boundary segmentation algorithm” and “on-angular-distance segmentation algorithm” are suitable for point cloud segmentation in different types of scenes. The modified RANSAC-TLS have made a great improvement on accuracy of fitting versus LS (least squares), TLS (total least squares), and RANSAC-LS. Finally, this paper conducts an experiment by executing an actual measurement and then preliminarily testifies the potential and future application of the proposed novel TLS (terrestrial laser scanning) equipment, with measurement parameters from it being changed in the experiment, by comparing with one existing TLS equipment—FARO. The test thus proves the relatively high feasibility and potential of the novel TLS presented in the paper (terrestrial laser scanning) in actual indoor measurement.

Funder

BUCEA Doctor Graduate Scientific Research Ability Improvement Project

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Reference33 articles.

1. Motion Planning of Mobile Robots for Autonomous Navigation on Uneven Ground Surfaces

2. Task allocation and route planning for robotic service networks in indoor building environments;R. K. Bharadwaj;Journal of Computing in Civil Engineering,2017

3. Blockchain-Based Trust Edge Knowledge Inference of Multi-Robot Systems for Collaborative Tasks

4. Digital design computing and modelling for 3-D concrete printing;B. Nva;Automation in Construction,2020

5. Smart component-oriented method of construction robot coordination for prefabricated housing

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3