Determination of Glyphosate, Glufosinate, and Their Major Metabolites in Tea Infusions by Dual-Channel Capillary Electrophoresis following Solid-Phase Extraction

Author:

Nguyen Manh Huy1ORCID,Nguyen Thanh Dam1ORCID,Vu Minh Tuan1ORCID,Duong Hong Anh12ORCID,Pham Hung Viet12ORCID

Affiliation:

1. Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), VNU University of Science (VNU-HUS), Vietnam National University, Hanoi (VNU), 334 Nguyen Trai Street, Thanh Xuan District, Hanoi, Vietnam

2. Research Centre for Environmental Technology and Sustainable Development (CETASD), VNU University of Science (VNU-HUS), Vietnam National University, Hanoi (VNU), 334 Nguyen Trai Street, Thanh Xuan District, Hanoi, Vietnam

Abstract

In this study, two analytical procedures were developed and validated using dual-channel capillary electrophoresis-coupled contactless conductivity detection (CE-C4D) followed by solid-phase extraction (SPE) for simultaneous determination of glyphosate (GLYP), glufosinate (GLUF), and their two major metabolites, aminomethylphosphonic acid (AMPA) and 3-(methylphosphinico) propionic acid (MPPA), respectively, in a popular beverage such as tea infusions. GLYP, GLUF, and AMPA were analyzed in the first channel using background electrolyte (BGE) of 1 mM histidine (His) adjusted to pH 2.75 by acetic acid (Ace). In contrast, MPPA was quantified in the second channel with a BGE of 30 mM His adjusted to pH 6.7 by 3-(N-morpholino) propanesulfonic acid (MOPS) and 10 µM of cetyltrimethylammonium bromide (CTAB). In addition, the samples of tea infusions were treated using SPE with 10 mL of 0.5 mM HCl in methanol as eluent. At the optimized conditions, the method detection limit (MDL) of GLYP, GLUF, AMPA, and MPPA is 0.80, 1.56, 0.56, and 0.54 μg/l, respectively. The methods were then applied to analyze four target compounds in 16 samples of tea infusions. GLYP was found in two infusion samples of oolong tea with concentrations ranging from 5.34 to 10.74 µg/L, and GLUF was recognized in three samples of green tea infusion in the range of 45.1–53.9 µg/L.

Funder

Vietnam National University

Publisher

Hindawi Limited

Subject

Computer Science Applications,Instrumentation,General Chemical Engineering,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3