Sensitivity Enhancement for Separation-Based Analytical Techniques Utilizing Solid-Phase Enrichment Approaches and Analyte Derivatization for Trace Analysis in Various Matrices

Author:

Farouk Hanan1,Ebrahim Hager1ORCID,Sonbol Heba1,Malak Monika1,Kamal Maha2,Ibrahim Noha1ORCID,Shawky Ahmed1,Zarad Walaa1,Emad Ahmed1,Emara Samy1ORCID

Affiliation:

1. Pharmaceutical Chemistry Department, Faculty of Pharmacy, Misr International University, Km 28 Ismailia Road, Cairo 44971, Egypt

2. Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 4th Industrial Zone, Banks Complex, 6th of October, Cairo 12573, Egypt

Abstract

Despite the fact that strong routine separation methodologies can give reliable specificity and validity at usual working pharmaceutical concentrations, they may fail at very low concentration levels. This poses considerable challenges for researchers investigating product purity and therapeutic drug monitoring. Sensitivity enhancement procedures are thus required to maximize the performance of separation techniques. Solid-phase extraction/solid-phase enrichment (SPE/SPEn) and pre-, post-, and in-column derivatization, as well as the use of sensitive detection devices, are the simplest strategies for improving sensitivity of separation-based analytical techniques. Large-volume injection of samples with online SPE/SPEn coupled with separation techniques increased sensitivity and improved detection as well as quantification limits without affecting peak shape and system performance. Although the primary purpose of derivatization is to improve sensitivity and selectivity, greener derivatization is growing in popularity and should be considered in analytical chemistry. In general, two strategies are essential for accomplishing greener derivatization goals. The first is the search for and use of ecologically acceptable derivatizing reagents, solvents, and reaction conditions. The second is miniaturization and automation of analytical methods. This review discusses significant advances in separation-based analytical techniques, specifically enrichment approaches and detector signal improvement for pharmaceutical quantification in various matrices at very low concentration levels. As a result of improved analytical systems setup in drug assays, the possibility of high-throughput analyses was also highlighted.

Publisher

MDPI AG

Subject

Filtration and Separation,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3