Lung Cancer Nodules Detection via an Adaptive Boosting Algorithm Based on Self-Normalized Multiview Convolutional Neural Network

Author:

Khan Adeel12ORCID,Tariq Irfan3ORCID,Khan Haroon4,Khan Sifat Ullah5,He Nongyue1ORCID,Zhiyang Li6ORCID,Raza Faisal7ORCID

Affiliation:

1. State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China

2. Department of Biotechnology, University of Science and Technology, Bannu, KP, Pakistan

3. School of Information Science and Engineering, Southeast University, Nanjing, China

4. Neuroscience and Neuroengineering Research Center, Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

5. School of Electronics Science and Engineering, Southeast University, Nanjing, China

6. Department of Clinical Laboratory, Nanjing Drum Tower Hospital Affiliated with Nanjing University Medical School, Nanjing, China

7. School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China

Abstract

Lung cancer is the deadliest cancer killing almost 1.8 million people in 2020. The new cases are expanding alarmingly. Early lung cancer manifests itself in the form of nodules in the lungs. One of the most widely used techniques for both lung cancer early and noninvasive diagnosis is computed tomography (CT). However, the intensive workload of radiologists to read a large number of scans for nodules detection gives rise to issues like false detection and missed detection. To overcome these issues, we proposed an innovative strategy titled adaptive boosting self-normalized multiview convolution neural network (AdaBoost-SNMV-CNN) for lung cancer nodules detection across CT scans. In AdaBoost-SNMV-CNN, MV-CNN function as a baseline learner while the scaled exponential linear unit (SELU) activation function normalizes the layers by considering their neighbors' information and a special drop-out technique (α-dropout). The proposed method was trained and tested using the widely Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) and Early Lung Cancer Action Program (ELCAP) datasets. AdaBoost-SNMV-CNN achieved an accuracy of 92%, sensitivity of 93%, and specificity of 92% for lung nodules detection on the LIDC-IDRI dataset. Meanwhile, on the ELCAP dataset, the accuracy for detecting lung nodules was 99%, sensitivity 100%, and specificity 98%. AdaBoost-SNMV-CNN outperformed the majority of the model in accuracy, sensitivity, and specificity. The multiviews confer the model’s good generalization and learning ability for diverse features of lung nodules, the model architecture is simple, and has a minimal computational time of around 102 minutes. We believe that AdaBoost-SNMV-CNN has good accuracy for the detection of lung nodules and anticipate its potential application in the noninvasive clinical diagnosis of lung cancer. This model can be of good assistance to the radiologist and will be of interest to researchers involved in the designing and development of advanced systems for the detection of lung nodules to accomplish the goal of noninvasive diagnosis of lung cancer.

Funder

National Basic Research Program of China

Publisher

Hindawi Limited

Subject

Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3