Multiobjective Genetic Programming Can Improve the Explanatory Capabilities of Mechanism-Based Models of Social Systems

Author:

Vu Tuong M.1ORCID,Buckley Charlotte2,Bai Hao2,Nielsen Alexandra3,Probst Charlotte4,Brennan Alan1,Shuper Paul4,Strong Mark1,Purshouse Robin C.2

Affiliation:

1. School of Health and Related Research, University of Sheffield, Sheffield, UK

2. Automatic Control and Systems Engineering, University of Sheffield, Sheffield, UK

3. Alcohol Research Group, Public Health Institute, Emeryville, CA, USA

4. Institute for Mental Health Policy Research, Centre for Addiction and Mental Health, Toronto, Canada

Abstract

The generative approach to social science, in which agent-based simulations (or other complex systems models) are executed to reproduce a known social phenomenon, is an important tool for realist explanation. However, a generative model, when suitably calibrated and validated using empirical data, represents just one viable candidate set of entities and mechanisms. The model only partially addresses the needs of an abductive reasoning process—specifically it does not provide insight into other viable sets of entities or mechanisms nor suggests which of these are fundamentally constitutive for the phenomenon to exist. In this paper, we propose a new model discovery framework that more fully captures the needs of realist explanation. The framework exploits the implicit ontology of an existing human-built generative model to propose and test a plurality of new candidate model structures. Genetic programming is used to automate this search process. A multiobjective approach is used, which enables multiple perspectives on the value of any particular generative model—such as goodness of fit, parsimony, and interpretability—to be represented simultaneously. We demonstrate this new framework using a complex systems modeling case study of change and stasis in societal alcohol use patterns in the US over the period 1980–2010. The framework is successful in identifying three competing explanations of these alcohol use patterns, using novel integrations of social role theory not previously considered by the human modeler. Practitioners in complex systems modeling should use model discovery to improve the explanatory utility of the generative approach to realist social science.

Funder

National Institute on Alcohol Abuse and Alcoholism

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3