Affiliation:
1. College of Computer and Information, Hohai University, Nanjing, China
2. Nanjing Tuofan Information Technology Company, Nanjing, China
3. National Key Lab for Novel Software Technology, Nanjing University, Nanjing, China
Abstract
With significant development of Internet of medical things (IoMT) and cloud-fog-edge computing, medical industry is now involving medical big data to improve quality of service in patient care. Karyotyping refers classifying human chromosomes. However, performing karyotyping task generally requires domain expertise in cytogenetics, long-period experience for high accuracy, and considerable manual efforts. An end-to-end chromosome karyotype analysis system is proposed over medical big data to automatically and accurately perform chromosome related tasks of detection, segmentation, and classification. Facing image data generated and collected by means of edge computing, we firstly utilize visual feature to generate chromosome candidates with Extremal Regions (ER) technology. Due to severe occlusion and cross overlapping, we utilize ring radius transform to cluster pixels with same property to approximate chromosome shapes. To solve the problem of unbalanced and small dataset by covering diverse data patterns, we proposed multidistributed generated advertising network (MD-GAN) to perform data enhancement by generating additional training samples. Afterwards, we fine-tune CNN for chromosome classification task by involving generated and sufficient training images. Through experiments in self-collected datasets, the proposed method achieves high accuracy in tasks of chromosome detection, segmentation, and classification. Moreover, experimental results prove that MD-GAN-based data enhancement contributes to classification results of CNN to a certain extent.
Funder
National Key R&D Program of China
Subject
Multidisciplinary,General Computer Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献