A New Multiple-Distribution GAN Model to Solve Complexity in End-to-End Chromosome Karyotyping

Author:

Wu Yirui1ORCID,Tan Xiao2,Lu Tong3

Affiliation:

1. College of Computer and Information, Hohai University, Nanjing, China

2. Nanjing Tuofan Information Technology Company, Nanjing, China

3. National Key Lab for Novel Software Technology, Nanjing University, Nanjing, China

Abstract

With significant development of Internet of medical things (IoMT) and cloud-fog-edge computing, medical industry is now involving medical big data to improve quality of service in patient care. Karyotyping refers classifying human chromosomes. However, performing karyotyping task generally requires domain expertise in cytogenetics, long-period experience for high accuracy, and considerable manual efforts. An end-to-end chromosome karyotype analysis system is proposed over medical big data to automatically and accurately perform chromosome related tasks of detection, segmentation, and classification. Facing image data generated and collected by means of edge computing, we firstly utilize visual feature to generate chromosome candidates with Extremal Regions (ER) technology. Due to severe occlusion and cross overlapping, we utilize ring radius transform to cluster pixels with same property to approximate chromosome shapes. To solve the problem of unbalanced and small dataset by covering diverse data patterns, we proposed multidistributed generated advertising network (MD-GAN) to perform data enhancement by generating additional training samples. Afterwards, we fine-tune CNN for chromosome classification task by involving generated and sufficient training images. Through experiments in self-collected datasets, the proposed method achieves high accuracy in tasks of chromosome detection, segmentation, and classification. Moreover, experimental results prove that MD-GAN-based data enhancement contributes to classification results of CNN to a certain extent.

Funder

National Key R&D Program of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3