1. Abid, F., & Hamami, L. (2018). A survey of neural network based automated systems for human chromosome classification. Artificial Intelligence Review, 491, 41–56.
2. Al-Kharraz, M. S., Elrefaei, L. A., & Fadel, M. A. (2020). Automated system for chromosome karyotyping to recognize the most common numerical abnormalities using deep learning. IEEE Access, 8, 157727–157747.
3. Andrade, M. F., Dias, L. V., Macario, V., Lima, F. F., Hwang, S. F., Silva, J. C., & Cordeiro, F. R. (2020). A study of deep learning approaches for classification and detection chromosomes in metaphase images. Machine Vision and Applications, 31(7), 1–18.
4. Arora, T. (2021). Classification of human metaspread images using convolutional neural networks. International Journal of Image and Graphics, 21(03), 2150033.
5. Baheti, B., Ahuja, G., & Parode, A. (2017). Automatic classification of m-fish human chromosome images using fuzzy classifier and statistical classifier. ICCASP/ICMMD-2016. Advances in Intelligent Systems Research, 137, 557–564.