Experimental Study on the Damage and Deterioration Behaviour of Deep Soft Rock under Water-Rock Interaction

Author:

Zhao Zenghui12,Liu Hao12,Lyu Xianzhou3ORCID,Wang Lei4,Tian Zhongxi5ORCID,Sun Jiecheng6

Affiliation:

1. State Key Laboratory of Mining Disaster Prevention and Control Co-Founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China

2. College of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao 266590, China

3. College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China

4. College of Architecture and Civil Engineering, Xi’an University of Science and Technology, Xi’an 710054, China

5. College of Architecture and Civil Engineering, Liaocheng University, Liaocheng 252000, China

6. Jinan Rail Transit Group Co., Ltd., Jinan 250101, China

Abstract

The ageing disintegration, the damage, and failure mechanism of water-saturated soft rock are of significance to hazard prevention for deep mining. In this paper, indoor experiments, including disintegration behaviour tests in water, uniaxial compression failure tests of rock samples with different water contents, and variations in the microstructure of mudstone under saturated water contents, were conducted. The investigation results show that the saturated water content of mudstone is 16.96% and that the rock mass bursts completely after being immersed in water for 72 h. With increasing water content, the uniaxial strength and elastic modulus at the prepeak stage present significant attenuation. However, Poisson’s ratio varies little, which indicates that the swelling of cemented mudstone is not obvious when meeting water. In addition, the failure pattern of mudstone changes from overall splitting failure to block fragmentation failure. Due to ion-exchange adsorption and the wedging action of water molecules, the edge of contact between particles changes from staggered to smooth, which leads to the expansion of pores, the loosening of mudstone structures, and a decrease in mechanical strength. Therefore, the diffusion, migration, and particle expansion of illite and other clay minerals in mudstone are the main factors leading to the structural damage and strength reduction of weakly cemented rock under water-rock interactions.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3