Affiliation:
1. State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Qingdao 266590, China
2. College of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao 266590, China
Abstract
Accurately predicting the roof collapse span is crucial in ensuring the safe production of thick seam mining with large mining height, which is easy in forming a “cantilever beam” structure. Considering roof damage caused by roadway excavation and coal seam mining disturbance, the fracture mechanics model of large mining height roof cantilever beam with nonpenetrating cracks was established. The roof was divided into two parts: the crack-affected area and the crack-unaffected area. The analytical expression of the boundary between the two areas was established by fracture mechanics methods. Based on the boundary equation, the influences of crack size, crack inclination, roof lithology, and roof thickness on the roof crack-affected area were analyzed in detail. Finally, the accuracy of the theoretical model was verified by numerical experiments using the extended finite element method. The results demonstrate that the size of the area affected by the vertical crack increases with the increase of the crack size and the thickness of the roof. The influence of the crack decreases with the increase of roof lithology. The probability of early periodic collapse of a thin roof with the crack is increased. When the crack is completely located in the interior of the roof, the crack-affected area shrinks greatly with the decrease of the crack inclination. When the crack inclination is small, the crack will not cause the early collapse of the roof. Overall, the conclusions obtained are of great significance for predicting the collapse span of a cantilever roof with initial damage in large mining height.
Funder
National Natural Science Foundation of China
Subject
Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献