Fracture Mechanical Behavior of Cracked Cantilever Roof with Large Cutting Height Mining

Author:

Zhao Zenghui12ORCID,Sun Wei12,Zhang Mingzhong12,Gao Xiaojie12,Chen Shaojie12ORCID

Affiliation:

1. State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Qingdao 266590, China

2. College of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao 266590, China

Abstract

Accurately predicting the roof collapse span is crucial in ensuring the safe production of thick seam mining with large mining height, which is easy in forming a “cantilever beam” structure. Considering roof damage caused by roadway excavation and coal seam mining disturbance, the fracture mechanics model of large mining height roof cantilever beam with nonpenetrating cracks was established. The roof was divided into two parts: the crack-affected area and the crack-unaffected area. The analytical expression of the boundary between the two areas was established by fracture mechanics methods. Based on the boundary equation, the influences of crack size, crack inclination, roof lithology, and roof thickness on the roof crack-affected area were analyzed in detail. Finally, the accuracy of the theoretical model was verified by numerical experiments using the extended finite element method. The results demonstrate that the size of the area affected by the vertical crack increases with the increase of the crack size and the thickness of the roof. The influence of the crack decreases with the increase of roof lithology. The probability of early periodic collapse of a thin roof with the crack is increased. When the crack is completely located in the interior of the roof, the crack-affected area shrinks greatly with the decrease of the crack inclination. When the crack inclination is small, the crack will not cause the early collapse of the roof. Overall, the conclusions obtained are of great significance for predicting the collapse span of a cantilever roof with initial damage in large mining height.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3