Multivariate Analysis of COVID-19 for Countries with Limited and Scarce Data: Examples from Nepal

Author:

Devkota Jyoti U.1ORCID

Affiliation:

1. Department of Mathematics, Kathmandu University, Dhulikhel, Nepal

Abstract

This paper aims to understand the dynamics of the spread of COVID-19 for Nepal. It is carried out with the help of multivariate statistics techniques. Direct relationships among variables are obvious, as they are easily seen and measured. But, hidden variables and their interrelationships also have a significant effect on the spread of a pandemic. Multinomial logistic regression, odds ratio, linear mixed-effect models, and principal component analysis are used here to analyze these hidden variables and their interrelationships. Also, such studies are very important for countries with limited and scarce data. These countries do not have a backbone of good-quality official records. Understanding the spread of a disease in a developing country also helps in management and eradication of that disease. The multivariate daily data of new cases, deaths, recovered, total cases, total deaths, total recovered, and total infected (isolated) are used here. The daily incidence of new cases is also modeled here using nonlinear regression. Two best nonlinear models are discussed here. ARIMA models are used for analyzing and forecasting the progression of the variables for two months into the future. The impact of government restriction in the form of strict lockdown 1, partially relaxed lockdown 1, completely relaxed lockdown 1, and strict lockdown 2 is minutely analyzed. These controls were exercised to curtail the spread of the pandemic. The role of these controls in curbing the spread of the pandemic is also studied here. The results obtained from this study can be applied to other countries of South Asia and Africa.

Publisher

Hindawi Limited

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference19 articles.

1. The first 2019 novel coronavirus case in Nepal

2. Coronavirus Pandemic (COVID-19);Our World in Data,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3