Chemometrics of the Environment: Hydrochemical Characterization of Groundwater in Lioua Plain (North Africa) Using Time Series and Multivariate Statistical Analysis

Author:

Athamena AliORCID,Gaagai AissamORCID,Aouissi Hani AmirORCID,Burlakovs JurisORCID,Bencedira SelmaORCID,Zekker Ivar,Krauklis Andrey E.

Abstract

This study aims to analyze the chemical composition of Lioua’s groundwater in order to determine the geological processes influencing the composition and origin of its chemical elements. Therefore, chemometrics techniques, such as multivariate statistical analysis (MSA) and time series methods (TSM) are used. Indeed, MSA includes a component analysis (PCA) and a cluster analysis (CA), while autocorrelation analysis (AA), supplemented by a simple spectral density analysis (SDA), is used for the TMS. PCA displays three main factors explaining a total variance (TV) of 85.01 %. Factors 1, 2, and 3 are 68.72%, 11.96%, and 8.89 % of TV, respectively. In the CA, total dissolved solids (TDS) and electrical conductivity (EC) controlled three groups. The elements SO42−, K+, and Ca2+ are closely related to TDS, the elements Na+, Cl−, and Mg2+ are closely related to CE, while HCO3− and NO3− indicate the dissociation of other chemical elements. AA shows a linear interrelationship of EC, Mg2+, Na+, K+, Cl−, and SO42−. However, NO3− and HCO3− indicate uncorrelated characteristics with other parameters. For SDA, the correlograms of Mg2+, Na+, K+, Cl−, and SO42− have a similar trend with EC. Nonetheless, pH, Ca2+, HCO3− and NO3− exhibit multiple peaks related to the presence of several distinct cyclic mechanisms. Using these techniques, the authors were able to draw the following conclusion: the geochemical processes impacting the chemical composition are (i) dissolution of evaporated mineral deposits, (ii) water–rock interaction, and (iii) evaporation process. In addition, the groundwater exhibits two bipolar characteristics, one recorded with negative and positive charges on pH and Ca+ and another recorded only with negative charges on HCO3− and NO3−. On the other hand, SO42−, K+, Ca2+, and TDS are the major predominant elements in the groundwater’s chemical composition. Chloride presence mainly increases the electrical conductivity of water. The lithological factor is dominant in the overall mineralization of the Plio Quaternary surface aquifer waters. The origins of HCO3− and NO3− are as follows: HCO3− has a carbonate origin, whereas NO3– has an anthropogenic origin. The salinity was affected by Mg2+, SO42−, Cl−, Na+, K+, and EC. Ca2+, HCO3−, and NO3− result from human activity such as the usage of fertilizers, the carbonate facies outcrops, and domestic sewage.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3